- Maître de Conférences/Assistant Professor
- Université de Poitiers
- cecile.vriet@univ-poitiers.fr
- +33 (0)5 49 45 48 48
Un contenu sur ce site
Une personne sur l'annuaire
Une formation sur le catalogue
Doctorat (PhD) en biologie moléculaire et physiologie végétale, University of East Anglia / John Innes Centre ; Norwich (Angleterre).
Diplôme d’ingénieur en Biotechnologies, Ecole Supérieure de Biotechnologie de Strasbourg (ESBS) ; Strasbourg (France).
Responsable de l’Unité d’Enseignement (UE) « Relation Inter-Organismes » dans le Master « Plantes et société, culture durable, paysage et phytovalorisation » et de l’UE « Sciences du végétal et Applications » en Licence Science de la Vie (L2) à l’Université de Poitiers.
Responsable des stages (équipe SEVE, laboratoire EBI).
Mes domaines d’expertises concernent l’étude des voies métaboliques et de signalisation impliquées dans la réponse des plantes aux stress abiotiques ainsi que dans les interactions plantes-microorganismes.
Depuis 2015, mes travaux de recherche portent sur le rôle et la régulation du transport de sucres dans les interactions mutualistes entre les plantes et des rhizobactéries bénéfiques communément appelées PGPR (Plant Growth Promoting Rhizobacteries). Ces dernières sont capables de conférer aux plantes une meilleure croissance et résistance aux stress. Une meilleure compréhension des mécanismes moléculaires impliqués dans ces interactions devrait contribuer à améliorer la productivité des cultures et permettre le développement d’une agriculture plus durable.
Brièvement, nos résultats révèlent que les PGPR induisent des changements d’expression de plusieurs gènes codant pour des transporteurs de sucres chez la plante modèle Arabidopsis thaliana, ainsi que des changements transcriptionnels majeurs dans d’autres processus biologiques liés à la croissance, au développement, et à la résistance des plantes aux stress (Dahmani et al., 2020; Desrut et al., 2020; Desrut et al., 2021). De plus, la caractérisation fonctionnelle que nous avons réalisée, par une approche de génétique inverse, sur deux gènes candidats codant pour les transporteurs de sucres SWEET11 et SWEET12, a permis de démontrer que ces derniers sont fonctionnellement impliqués dans les effets bénéfiques conférés par la souche PGPR Pseudomonas simiae WCS417r sur la croissance et le développement des plantules d’Arabidopsis (Desrut et al., 2020).
Nous transférons actuellement les résultats de ces travaux de recherche au pois (Pisum sativum), une espèce modèle des légumineuses d’intérêt agro-écologique, cultivée pour la haute valeur nutritionnelle de ses graines. Dans le contexte actuel de changement climatique, ses rendements sont fortement impactés par des épisodes de sécheresse. Avec une attention particulière portée sur l’allocation des ressources carbonées et les traits d’architecture racinaire, nos objectifs sont de mieux comprendre les mécanismes de réponse physiologiques et moléculaires du pois au déficit hydrique, et d’explorer les effets bénéfiques et le mode d’action des PGPR, et d’autres biostimulants, dans sa tolérance à ce stress. Cette étude devrait identifier des marqueurs moléculaires qui contribueront à la sélection de nouveaux génotypes plus tolérants à la sécheresse. À long terme, nos travaux de recherche visent à développer des stratégies novatrices et respectueuses de l’environnement pour l’amélioration de la productivité des cultures.
Allocation du carbone, transport de sucres, interactions plantes-microorganismes, rhizobactéries promotrices de la croissance des plantes (Plant Growth Promoting Rhizobacteria, PGPR), biostimulants, carence hydrique, traits de l’architecture racinaire, Arabidopsis thaliana, pois (Pisum sativum)
Morin A., Kadi F., Porcheron B., Vriet C., Maurousset L., Lemoine R., Pourtau N., Doidy J. (2022) Genome-wide identification of invertases in Fabaceae, focusing on transcriptional regulation of Pisum sativum invertases in seed subjected to drought. Physiol Plant. 20:e13673. doi: 10.1111/ppl.13673
Detray J., Cognard V., Dijan-Caporalino C., Marteu N., Doidy J., Pourtau N., Vriet C., Maurousset, L., Bouchon, D., Clause J. (2022) Impact of leek intercropping, mycorrhizae and earthworms on root-knot nematodes and tomato plant performance. Applied Soil Ecology, 169:104181 ; doi :10.1016/j.apsoil.2021.104181
Desrut A., Thibault F., Mercado-Blanco J., Coutos-Thévenot P., Vriet C. (2021) Transcriptional regulation of plant sugar transporter genes by beneficial rhizobacteria. Journal of Plant Interactions, 16:1, 443-451; doi: 10.1080/17429145.2021.1974582
Desrut A., Moumen B., Thibault F., Le Hir R., Coutos-Thevenot P., Vriet C. (2020) Beneficial rhizobacteria Pseudomonas simiae WCS417 induce major transcriptional changes in plant sugar transport. Journal of experimental botany 71: 7301-7315. doi : 10.1093/jxb/eraa396
Dahmani M.A., Desrut A., Moumen B., Verdon J., Mermouri L., Kacem M., Coutos-Thevenot P., Kaid-Harche M., Berges T., Vriet C. (2020) Unearthing the Plant Growth-Promoting Traits of Bacillus megaterium RmBm31, an Endophytic Bacterium Isolated From Root Nodules of Retama monosperma. Frontiers in plant science 11: 124. doi : 10.3389/fpls.2020.00124
Hennion N., Durand M., Vriet C., Doidy J., Maurousset L., Lemoine R., Pourtau N. (2019) Sugars en route to the roots. Transport, metabolism and storage within plant roots and towards microorganisms of the rhizosphere. Physiol Plant. 165: 44-57.
Vriet C., Lemmens K., Vandepoele K., Reuzeau C., Russinova E. (2015) Evolutionary trails of plant steroid genes. Trends Plant Sci. 20: 301-308.
Vriet C., Hennig L., Laloi C. (2015) Stress-induced chromatin changes in plants: of memories, metabolites and crop improvement. Cell Mol Life Sci. 72:1261-73.
Vriet C., Smith A.M., Wang T.L. (2014) Root starch reserves are necessary for vigorous re-growth following cutting back in Lotus japonicus. PLoS ONE 9(1): e87333.
Vriet C., Russinova E., Reuzeau C. (2013) From Squalene to Brassinolide: the Steroid Metabolic and Signaling Pathways across the Plant Kingdom. Mol Plant. 6: 1738-1757.
Šimková K., Moreau F.*, Pawlak P.*, Vriet C.*, Baruah A., Madeira Alexandre C., Hennig L., Apel K., Laloi C. (2012) The integration of stress-related and ROS-mediated signals by Topoisomerase VI in Arabidopsis thaliana. Proc Natl Acad Sci U S A. 109: 16360-16365.
*These authors contributed equally to this article.
Vriet C., Russinova E., Reuzeau C. (2012) Boosting Crop Yields with Plant Steroids. The Plant Cell. 24: 842-57.
Vriet C., Welham T., Brachmann A., Pike M., Pike J., Perry J., Parniske M., Sato S., Tabata S., Smith A.M., Wang T.L. (2010) A Suite of Lotus japonicus Starch Mutants Reveals both Conserved and Novel Features of Starch Metabolism. Plant Physiology 154: 643-655.
________________________________________________________________________________________________________________
PhD in plant molecular biology and physiology, University of East Anglia / John Innes Centre ; Norwich (UK).
Engineering degree in biotechnology, Ecole Supérieure de Biotechnologie de Strasbourg (ESBS); Strasbourg (France).
From my previous positions, I gained expertise in the fields of plant carbohydrate metabolism and legume-rhizobia symbiosis, hormone biosynthesis and signaling pathways, plant response to oxidative stress, and biotechnology-assisted plant breeding (high-throughput analysis of gene functions, system biology approaches, and intellectual property). I also possess sound practical skills and theoretical knowledge in plant molecular biology, physiology, biochemistry, and genomics.
Since 2015, my research interests focus on the role and regulation of sugar transport in plant-microorganism interactions, and more particularly those involving Plant Growth Promoting Rhizobacteria (PGPR). PGPR are able to promote plant growth and to improve the plant tolerance to various abiotic and biotic stresses. The molecular signals and actors involved in these biological processes remain largely unknown to date, which limit the wide application of PGPR in agriculture. With the aim to identify essential genes involved in the PGPR-induced beneficial effects on plant productivity, we have carried out a comprehensive set of phenotypic, biochemical, and gene expression analyses (by RNA-sequencing and qRT-PCR) using the model plant Arabidopsis thaliana and a collection of PGPR strains. Results from our study notably show that PGPR induces major transcriptional changes in sugar transport and in several other key biological processes linked to plant growth, development and defense (Dahmani et al., 2020; Desrut et al., 2020; Desrut et al., 2021). Using a reverse genetic approach, we have also demonstrated that SWEET11 and SWEET12, two sugar transporter genes whose expression are down-regulated by the well characterized strain Pseudomonas simiae WCS417r, are functionally involved in its plant growth promoting effects, possibly by controlling the allocation of carbon resources (Desrut et al., 2020).
We are currently translating this research work on plant-PGPR interaction to pea (Pisum sativum), a model legume and crop of agro-ecological importance. In the current context of climate change, its yields are strongly impacted by episodes of drought. With a particular attention paid to carbon resource allocation and root architecture traits, our objectives are to better understand the physiological and molecular response mechanisms of pea to water deficit, and to explore the beneficial effects and mode of action of PGPR, and other biostimulants, in its tolerance to this stress. This study should identify molecular markers that will contribute to the selection of novel genotypes more tolerant to drought. In longer term, our research work aims at developing novel and environmentally friendly strategies for crop productivity improvement.
Carbon allocation, sugar transport, plant-microorganism interactions, Plant Growth Promoting Rhizobacteria (PGPR), biostimulants, water deficit, root architecture traits, Arabidopsis thaliana, pea (Pisum sativum).
Morin A., Kadi F., Porcheron B., Vriet C., Maurousset L., Lemoine R., Pourtau N., Doidy J. (2022) Genome-wide identification of invertases in Fabaceae, focusing on transcriptional regulation of Pisum sativum invertases in seed subjected to drought. Physiol Plant. 20:e13673. doi: 10.1111/ppl.13673
Detray J., Cognard V., Dijan-Caporalino C., Marteu N., Doidy J., Pourtau N., Vriet C., Maurousset, L., Bouchon, D., Clause J. (2022) Impact of leek intercropping, mycorrhizae and earthworms on root-knot nematodes and tomato plant performance. Applied Soil Ecology, 169:104181 ; doi :10.1016/j.apsoil.2021.104181
Desrut A., Thibault F., Mercado-Blanco J., Coutos-Thévenot P., Vriet C. (2021) Transcriptional regulation of plant sugar transporter genes by beneficial rhizobacteria. Journal of Plant Interactions, 16:1, 443-451; doi: 10.1080/17429145.2021.1974582
Desrut A., Moumen B., Thibault F., Le Hir R., Coutos-Thevenot P., Vriet C. (2020) Beneficial rhizobacteria Pseudomonas simiae WCS417 induce major transcriptional changes in plant sugar transport. Journal of experimental botany 71: 7301-7315. doi : 10.1093/jxb/eraa396
Dahmani M.A., Desrut A., Moumen B., Verdon J., Mermouri L., Kacem M., Coutos-Thevenot P., Kaid-Harche M., Berges T., Vriet C. (2020) Unearthing the Plant Growth-Promoting Traits of Bacillus megaterium RmBm31, an Endophytic Bacterium Isolated From Root Nodules of Retama monosperma. Frontiers in plant science 11: 124. doi : 10.3389/fpls.2020.00124
Hennion N., Durand M., Vriet C., Doidy J., Maurousset L., Lemoine R., Pourtau N. (2019) Sugars en route to the roots. Transport, metabolism and storage within plant roots and towards microorganisms of the rhizosphere. Physiol Plant. 165: 44-57.
Vriet C., Lemmens K., Vandepoele K., Reuzeau C., Russinova E. (2015) Evolutionary trails of plant steroid genes. Trends Plant Sci. 20: 301-308.
Vriet C., Hennig L., Laloi C. (2015) Stress-induced chromatin changes in plants: of memories, metabolites and crop improvement. Cell Mol Life Sci. 72:1261-73.
Vriet C., Smith A.M., Wang T.L. (2014) Root starch reserves are necessary for vigorous re-growth following cutting back in Lotus japonicus. PLoS ONE 9(1): e87333.
Vriet C., Russinova E., Reuzeau C. (2013) From Squalene to Brassinolide: the Steroid Metabolic and Signaling Pathways across the Plant Kingdom. Mol Plant. 6: 1738-1757.
Šimková K., Moreau F.*, Pawlak P.*, Vriet C.*, Baruah A., Madeira Alexandre C., Hennig L., Apel K., Laloi C. (2012) The integration of stress-related and ROS-mediated signals by Topoisomerase VI in Arabidopsis thaliana. Proc Natl Acad Sci U S A. 109: 16360-16365.
*These authors contributed equally to this article.
Vriet C., Russinova E., Reuzeau C. (2012) Boosting Crop Yields with Plant Steroids. The Plant Cell. 24: 842-57.
Vriet C., Welham T., Brachmann A., Pike M., Pike J., Perry J., Parniske M., Sato S., Tabata S., Smith A.M., Wang T.L. (2010) A Suite of Lotus japonicus Starch Mutants Reveals both Conserved and Novel Features of Starch Metabolism. Plant Physiology 154: 643-655.